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Abstract— Motion planning in dynamic and uncertain real-
world environments remains a critical challenge in robotics,
as it is essential for the effective operation of autonomous
systems. One strategy for motion planning has been to introduce
a state lattice where pre-computed motion primitives can be
combined with graph-based search methods to find a physically
feasible motion plan. However, introducing lattice planning into
dynamic, uncertain settings remains challenging. It is non-
trivial to incorporate uncertain dynamic information into the
planning process in real time. Thus, in this paper we propose
a lattice planning framework for dynamic environments with
extensions to handle safety-critical edge-cases that can arise
with the uncertain nature of the environment. The proposed
method, Safe Lattice Planner (SLP), extends the Receding-
Horizon Lattice Planner (RHLP) with enhanced replanning
and survival capabilities to handle the dynamic habitat. We
thoroughly evaluate SLP in a new benchmark suite against
provided baselines. SLP is found to outperform the baselines
in terms of safety and resilience in the dynamic environment
while reaching the goal state in an efficient manner. We release
the benchmark and SLP to accelerate the field of safe robotics.

I. INTRODUCTION

Safe motion planning is becoming increasingly important
when developing autonomous systems meant to inhabit the
real-world. Motion planning is the problem of computing
a trajectory for a robot from a start state to a goal state
while ensuring certain constraints are satisfied throughout the
motion [1]. Such constraints can be to avoid collisions and
satisfy certain velocity, distance, or time constraints. In this
setting, being safe means not posing a threat to other static
or dynamic obstacles in the environment, which is achieved
by enabling the agent to be aware of its surroundings while
constructing its plan. The world we live in is ever-changing.
If robots are to share this world with us, they need to navigate
safely so that neither property, humans, nor other agents are
harmed. By being aware of its surroundings, a robot can
incorporate that information into its plan and take appropriate
safety measures. Motion planning in an offline or static
setting has been extensively studied in the literature [2][3][4]
with applications in automotive [5], quadrotors [6] and field-
robotics [7]. However, for real-world deployment in complex
and unstructured environments, static planning is not feasible
due to the temporal and dynamic nature of the real world.
Constructing motion plans in dynamic environments is an
open problem in robotics as it often requires real-time online
planning with limited time budgets for plan construction. The

E. Wiman and M. Tiger are with the Department of Com-
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Fig. 1. Challenging motion planning scenario. The agent successfully
navigates through a crowd of dynamic obstacles while finding a collision-
free, cost-efficient and dynamically-feasible trajectory. Faded spheres denote
future dynamic obstacle predictions. Legend is found in Sec. III and IV-B.

use for safe motion planning is vast, with applications in
healthcare [8], at construction sites [9], in agriculture [10],
in automotive industry [5], and underwater maintenance [11].

However, existing techniques suffer from not being able
to achieve real-time performance in dynamic environments,
mainly due to limited time-budgets [12]. Addressing this
problem is essential since the real world contains high
geometric complexity and a multitude of different dynamic
obstacles. Fig. 1 shows an illustrative example of a situation
that has been too complex for past approaches, but which
is a far cry from what regularly occur in the real world.
Autonomous systems that can handle dynamic obstacles are
far more useful than those that can not.

In this work, we consider the problem of safe motion
planning in complex and unstructured environments in the
presence of multiple dynamic obstacles. In this setting we
want to navigate as quickly as possible while satisfying sys-
tem dynamics requirements as well as safety requirements.
The contributions of this work are:

• An extensive benchmark1 suite specifically tailored for
evaluating motion planners in dynamic environments.

• An evaluation of existing dynamic motion planners
in the provided benchmark. The motion planners are
evaluated to provide insight into their different strengths
and weaknesses.

• Building on [13], we propose Safe Lattice Planner
(SLP), a new motion planner that introduces adaptive
replanning, local planning, and emergency trajectories

1https://github.com/emilcw/safelatticeplanning



to handle the safety-critical edge-cases in dynamic en-
vironments in real-time. SLP demonstrates both preem-
inent resilience and safety compared to baselines, mak-
ing strides towards deployable, safe motion planning for
the real world.

The paper’s organization is as follows: II introduces re-
lated research to contextualize the paper’s contributions. The
dynamic motion planning problem is outlined in III. The
presentation of the proposed method, SLP, is in IV. In V
an evaluation of the provided baselines compared with the
proposed approach is provided. Finally, conclusions in VI.

II. RELATED WORK

The motion planning problem in dynamic environments
has been under active research for over four decades
[14][15]. The earliest approaches consider motion planning
in simple 2D polygon environments with known easily
computed obstacle trajectories [14]. Over time, a myriad
of different approaches have emerged to tackle the dynamic
aspects of the problem, among them modeling obstacles as
velocity obstacles [15], introducing probabilistic strategies to
handle the uncertain environment [16] and utilizing partial
motion planning to achieve real-time performance [17].

Lattice planning in the context of motion planning is de-
rived primarily from the automotive domain [5][3][18]. The
lattice framework consists of modeling the problem domain
as a lattice where pre-computed feasible motion primitives
are used to connect nodes in the lattice. Consequently, the
motion planning problem can then be solved online by
employing graph-based search algorithms that traverse the
lattice with the help of the motion primitives, leading to
a fully feasible motion plan. This approach of utilizing
lattice planning has been investigated in both static [2] and
dynamic [13] environments as well as in structured [19] and
unstructured [20] environments. The approach suggested in
[20] also proposes the use of a multi-resolution state lattice
which is crucial to perform efficient high-quality planning
in real-time. This technique has been adapted in [13] which
this work builds upon.

The approach in [13] extends the multi-resolution frame-
work by using numerical optimal control [21] to construct lo-
cally optimal motion primitives. This ensures that the motion
primitives comply with the system dynamics, that physical
constraints are met and that smooth control signals can be
used all while minimizing a desired performance measure.
Generating motion primitives offline for quadrotors have
been done before [4][22], however not in a dynamic context
or with wait-time states as in [13]. More recent works for
trajectory planning have begun to consider dynamic obstacles
tracking and prediction [6], however, their evaluations often
lack diverse environments to truly test performance.

Previous approaches such as [22] utilize RRT-variants as
baselines. The Rapidly-exploring Random Trees (RRT) [23]
has been widely used both in a path planning and motion
planning context. One such variant of RRT is RRT* [24]
which has been shown to be asymptotically optimal by
adding a rewiring step to the planning process. Time-based

RRT [25] (Temporal RRT) has been used as a baseline in
this work but with the RRT* extension. The main extension
in Time-based RRT is to extend the configuration space with
a time variable to allow for temporal planning.

III. PROBLEM STATEMENT

Consider a robot that is modeled as a time-invariant
nonlinear system

ẋ(t) = f(x(t), u(t)) (1)

where x(t) ∈ Rn denotes the robot’s states and u(t) ∈ Rm

its control signals. The robot is assumed to have physically
imposed constraints on its states x(t) ∈ X and control
signals u(t) ∈ U . The 3D-world X contain volumes that
are occupied by obstacles Oobs(t) and the world changes
over time as dynamic obstacles move about. The free-space
is where the robot is not in collision with any obstacle at
time t and is defined as Xfree(t) = X \Oobs(t), see Fig 1. A
is the set of available actions to traverse X .

The solution to the generation of feasible and collision-
free reference trajectory from xI to xG for (1) is given by
solving the dynamic motion planning problem (DMPP) [13],

min
u0(·), tG

J =

∫ tG

tI

L(x0(t), u0(t), t) dt

subj. to ẋ0(t) = f(x0(t), u0(t)), (2)
x0(tI) = xI , x0(tG) = xG,

x0(t) ∈ Xfree(t), ∀t ∈ [tI , tG]

u0(t) ∈ U , ∀t ∈ [tI , tG]

which is a nonlinear nonconvex optimal control problem. The
subscript 0 in x0(t) and u0(t) distinguishes planned state and
control from current state x(t) and control u(t). In addition
to (2), the continual planning must remain safe. The objective
of the dynamic motion planner is, additionally, to
O1: generate a feasible, collision-free reference trajectory

plan = (x0(t), u0(t)), t ∈ [tI , tG]

that moves the vehicle from its current state xI to
a desired goal state xG, while optimizing a given
performance measure J , e.g., minimum time. L denotes
the momentary performance for every time point.

O2: continuously plan to stay collision-free, for ∆safe sec-
onds into the future, at xG.

O3: re-plan if the current plan becomes infeasible.
O4: if no feasible plan to xG can be found, plan to get as

close as possible to xG, spatially or temporally.
O5: if no plan can be found that satisfy the robot being

collision-free for ∆safe seconds into the future, then plan
to avoid collisions for as long as possible.

IV. PROPOSED APPROACH

In this work we propose SLP, that extends the work of
RHLP [13][26]. To make the paper self-contained, Sec. (IV-
A)-(IV-C) summarize the fundamental workings of RHLP.
Then, Sec. (IV-D)-(IV-G) introduces the new concepts and
improvements that define SLP.



A. Lattice approximation

Finding even a feasible solution to the DMPP, let alone an
optimal one, is often intractable. Specialized motion planning
algorithms are instead used to achieve real-time perfor-
mance [1]. To this end, the DMPP (2) is approximated with
search over a temporal lattice. The Lattice approximation,
first introduced in [26], to the DMPP, is formally

min
a1,...,aN , N

J =

N∑
n=1

Jn (3)

subj. to
(
xn
0 (t), u

n
0 (t)

)
= an ∈ A, ∀n,∣∣∣∣Nxn

0 (0)−Nxn−1
0 (tnF )

∣∣∣∣
2
= 0, ∀n > 0,

T(xI) x
0
0(0) = xI ,

TN−1 xN
0 (tNF ) = xG,

Tn−1 xn
0 (t) ∈ Xfree(Tn−1 + t), ∀t ∈ [0, tnF ], ∀n

where T(x) is a translation matrix defined by the position
in state x and N is a diagonal matrix with zeros at the
position dimensions (projecting a state’s position to zero
under multiplication). TK = T(xI)

∏K
k=0 T

(
xk
0(t

k
F )

)
is

the resulting translation of the first K motion primitives
in the plan and TK = tI +

∑K
k=0 t

k
F is the start time of

the K:th motion primitive in the plan. Here, tkF denotes
the K:th motion primitive duration. The resulting plan
(tI , xI , a0, . . . , aN ) consists of a sequence of N motion
primitive actions, a0, . . . , aN , ∀an ∈ A. The end time of the
plan is tG = TN . The reference trajectory (x0(t), u0(t)), t ∈
[tI , tG] is constructed from the plan by sequential spatio-
temporal concatenation of the sequence of motion primitives
in the plan. Lattice-based motion planning is resolution
complete, and resolution optimal if an admissible heuristic
is used with A∗ [18]. Lattice-based motion planning is
consequently equivalent to the DMPP in the resolution-limit.

B. Multiple Receding Horizon Lattice Planning

Traditional receding horizon motion planning (RHMP)
divides the temporal horizon of J into two parts: an initial
short horizon where the full problem is solved and a cost-
to-go term Φ estimating the remaining cost of getting to the
goal. A simple estimate like weighted Euclidean distance
makes the planner prone to dead-ends, while global planning
remains intractable. Instead [13] strike a balance between
global and local planning, by dividing the temporal interval
of DDMP into three parts,

J =

∫ tH1

tI

L(x0(t), u0(t), t) dt︸ ︷︷ ︸
High-resolution temporal lattice

+

∫ tH2

tH1

L(x0(t), u0(t), t) dt︸ ︷︷ ︸
Low-resolution lattice

+

∫ tG

tH2

L(x0(t), u0(t), t) dt︸ ︷︷ ︸
≈Φ(x0(tH2

),xG,tH2
)

.

The first part is solved in a high-resolution temporal lattice
where all motion primitives in A are allowed, including high-
velocity and other high-performing maneuvers. The second
part is solved using a low-resolution lattice, where a very
limited set of motion primitives are allowed, Areduced ⊂ A,
see Fig. 1. The last part is again the estimated cost-to-go
denoted Φ. The second and third part form a systematic way
to estimate the cost-to-go, which can now be informative
enough to let the planner avoid poor long-term trajectory
selections. If a solution to the goal is found already in the
low-resolution lattice of the second part, then the resulting
global plan is a physically feasible trajectory from start to
goal. As the robot moves closer to the goal then the transition
from high-resolution to low-resolution lattice moves forward
in a receding horizon fashion. This plan construction is
compliant with Sec. III O1.

C. Safe and Proactive Motion Planning

The horizon of the first part is required to be collision-
free with dynamic obstacles for at least ∆safe seconds into
the future, adding the constraint

tH1 − tI ≥ ∆safe (4)

to the optimization problem. This part ensures that the
motion plan is safe and effective in the short term and
that it is consistent with Sec. III O1-O2. Since the motion
of obstacles far into the future is harder to predict, only
collisions with static obstacles are considered in the low-
resolution lattice search. If the motion planner has reached
its goal xG it will plan to remain there using wait-time state
(as introduced in [13], a wait-time state allows the planner to
intentionally idle the robot) while fulfilling the requirement
of having a safe plan ∆safe seconds into the future. That is,
in a pure waiting scenario we set xG = xI and produce
a plan of duration ∆safe (so tG = tI + ∆safe) to ensure the
robot remains safe while idle. tI is the time-point of the start
of the plan. In a stochastic world, a valid plan can become
unsafe, so the robot continuously replans to avoid collisions
and reach its goal, a process known as dynamic in-flight
replanning [27]. This part is connected to Sec. III O3.

D. Temporal Motion Planning

The receding-horizon lattice-based motion planning prob-
lem is solved using a two-stage graph search (Alg. 1). The
first search is halted if it reaches a time-out (∆phase1 seconds)
before finding the goal (Alg. 1, line 9). If so, then the second
search begins from all safe partial plans in the frontier of the
first search. It does so with an initial transition from A to
Areduced and then continuing with only using Areduced until
the goal is found or a second time-out (∆phase2) is reached
(Alg. 1, line 26). If no plan to the goal is found, the lattice
planner operates as a local planner with a very informative
cost-to-go estimator. The resulting plan will have one of the
statues in Tab. I, which enumerates the possible outcomes
statues which are also annotated in Alg. 1 for clarity.



Status Description
EMERGENCY Collision before reaching next state on lat-

tice, escape with emergency trajectory to safe
state, see Sec. IV-G.

FULL A global temporal plan is found to the goal.
REDUCED A plan with a temporal horizon (of at least

∆safe) after which a reduced set of motion
primitives are used. A global plan unless
accompanied by the LOCAL status.

EXHAUSTED Search space exhausted, no plan found to the
goal.

LOCAL The goal was not found. Utilize the frontier
to find a plan where the end of the plan is the
temporally longest collision-free plan ending
up closest to the goal or xcollision, see Sec.
IV-F.

EPHEMERAL A plan with a temporal horizon that is less
than ∆safe. Consequently, the plan is not
guaranteed to be collision-free up until ∆safe.
A global plan unless accompanied by the
LOCAL status.

FAILURE No collision-free plan can be found.

TABLE I
POSSIBLE RESULT CATEGORIES OF SLP, ALG. 1.

Furthermore, a found plan that is either REDUCED or
EPHEMERAL can, in addition, be LOCAL if the goal is
not found in the second search using the low-resolution
lattice. Also, temporal motion planning requires some pre-
diction component in order to predict the future trajectories
of dynamic obstacles. In this work, only simple constant
velocity [28] prediction has been implemented for the sake
of simplicity. However, the planning algorithm is agnostic to
this and it can easily be extended with a more sophisticated
approach as future work.

E. Adaptive Replanning

In [13], the replanning time (e.g. sum of ∆phase1 and
∆phase2) is set to a fixed constant. This is impractical in a
dynamic environment if the planner assumes it has, say, 3
seconds to replan but a collision will occur in 2 seconds, then
a collision is inevitable unless the replanning interval adjusts
adaptively. To address this issue, an adaptive replanning
algorithm has been developed in SLP, see Fig. 2. Inspecting
Fig. 2, in (1) there is no future collision detected and thus the
replanning time is set to ∆safe ·ϵ where ϵ ≥ 0 depends on the
platform and the available sensors. In (2), a future collision is
detected but tcollision > ∆safe, hence the replanning time is
set to ∆safe. In (3), a collision will occur within ∆safe and
the replanning time is accordingly set to tcollision · γ where
1 ≥ γ ≥ 0 is tuned depending on preferred safety measures
and the temporal length of motion primitives. Lastly in (4), if
the duration of the plan is too short, set the replanning time
to the temporal length of the plan. In this work, ϵ = 2 and
γ = 2/3, found by manual tuning until sufficient behavior.
This ensures that Sec. III O3 can be done in a feasible way.

Algorithm 1: Receding-Horizon Temporal SLP func-
tion for making a plan from a given state to a goal
state.

1 function PLAN(plan, xG, tstart, ∆safe, ∆phase1, ∆phase2, A,
Areduced):

2 emergency, tcollision, xcollision

← IN COLLISION(plan, tstart)
3 if emergency then
4 plan ← BREAKOUT(plan, tcollision)
5 return plan, EMERGENCY
6 end
7 xI ← ADAPTIVE(plan, tcollision,∆safe)
8 explored← {}, frontier← {xI}, Xgoal ← {xG}
9 plan
← SEARCH(tstart, Xgoal,∆phase1,∆safe,A, frontier, explored)

10 if |plan| > 0 then
11 (t′, x′)← plan[end]
12 if xG = x′ and t′ ≥ tstart +∆safe then
13 return plan, FULL
14 end
15 if frontier = {} or t′ < tstart +∆safe then
16 if frontier = {} then
17 frontier← {(t, x) ∈ explored | t =

max
t

explored}
18 else if t′ < tstart +∆safe then
19 frontier← {(t, x) ∈ frontier | t =

max
t

frontier}
20 end
21 status← EPHEMERAL
22 else
23 frontier← {(t, x) ∈ frontier | t ≥ tstart +∆safe}
24 status← REDUCED
25 end
26 plan ←

SEARCH(tstart, Xgoal,∆phase2,Areduced, frontier, explored)
27 (t′, x′)← plan[end]
28 if xG = x′ then
29 return plan, status
30 else if frontier = {} then
31 return plan, EXHAUSTED
32 else
33 xlocal ← LOCAL-PLANNING(frontier,
34 xcollision, xG, ∆safe)
35 plan←

GENERATE-PLAN(xlocal, frontier, explored)
36 return plan, (status, LOCAL)
37 end
38 else
39 return {}, FAILURE
40 end

F. Local planning

If no collision-free plan is available but a collision isn’t
imminent, the robot shouldn’t stay idle. Instead, it should
engage in best-effort emergency collision avoidance, as de-
scribed in LOCAL (Tab. I), hoping the environment changes
to allow a new safe plan. Alg. 1, line 33, enables a survival
strategy when planning fails, whether the robot is trapped
or planning is interrupted (line 9 or 26). From the previous
search, several sub-plans exist that can be used for best-
effort behavior. These sub-plans either fall under the statues
REDUCED or EPHEMERAL. In this work, the best-effort



Fig. 2. Decision-making process in the adaptive replanning component.
Item 1-4 implies different resulting replanning times. xi denotes a state on
the lattice.

emergency collision avoidance strategy consists of two steps.
First, if there exists a previous plan (meaning that this is
not the first planning cycle) where a dynamic collision has
occurred and the time of collision is tcollision > ∆safe, then the
plan that takes us the closest to the collision state (without
actually colliding of course) and keeps us alive the longest
is selected:

xlocal = min
||x−xcollision||2

frontier (5)

The reasoning behind this strategy is that if there has
previously existed a plan that leads to the goal and this
plan becomes invalidated at some state, then the planner
should try to maintain its presence close to that state since it
might become available in the near future given the dynamic
environment, see Fig. 3, item 1. If no dynamic collision
has occurred beforehand, the best-effort emergency collision
strategy reduces to:

xlocal = min
||x−xG||2

frontier (6)

The presented strategy prioritizes survival time and being
as close as possible to the goal, see Fig. 3 item 2. If the
robot is fully boxed in, it will stay away from colliding with
any obstacles as long possible as in Fig. 3 item 3 (see Sec.
IV-C). Depending on application, other strategies might be
more suitable. This extension addresses Sec. III O4-O5.

G. Emergency trajectories

A limitation concerning RHLP is that if a dynamic col-
lision were to occur during a primitive execution, it cannot
be avoided since replanning only can be done from states on
the lattice. In a dynamic setting this can be highly dangerous
since collision might occur during primitive execution. In
this work we propose the use of emergency trajectories, see
Fig. 4, to address this issue. If at any point in the primitive
execution tcollision < primitive end time is fulfilled (Fig.
4 (1)), then the planner will find a suitable breakout point
further in time on the current primitive but before tcollision.

Fig. 3. Local planning (1) A plan has existed previously but is no longer
feasible, plan to stay as close to the collision state as possible to await an
opening (2) No plan exists to the goal due to static obstacles, plan to get
as close as possible while avoid dynamic obstacles (3) Dynamic collision
is unavoidable, the agent tries to find the temporally longest collision-free
plan.

From this point, an expansion of a limited set of primitives
will be made and the one the keeps the robot collision-free
for the longest duration will be selected. This emergency
primitive will be connected to the breakout point and the
robot will escape the imminent collision (Fig. 4 (2)). As a
consequence, the robot will end up in an off-lattice pose. In
the next planning iteration the robot will find the closest on-
lattice pose, steer to this state using the NMPC and resume
the replanning process (Fig. 4 (3)). This feature primarily
addresses Sec. III O5 but with even narrower constraints on
safe planning time.

Fig. 4. Emergency trajectory. (1) During primitive execution is a collision
detected before reaching the next state. (2) Abort primitive execution from
breakout point and escape to end point. (3) Re-align with lattice and restart
the planning process. In this scenario two dynamic obstacles are blocking
the opening. Note that faded spheres are estimated future positions.

V. EXPERIMENTAL RESULTS

To examine the performance of SLP compared to other
dynamic motion planners, particularly in challenging com-
plex scenarios, has a benchmark been provided (V-A). The
benchmark consists of four different motion planners, RRT*
[24], Temporal RRT* (T-RRT*) [29], RHLP [13] and the
proposed approach SLP. The planners undergo initial assess-
ment in static environments to collect baseline performance
before they are put in a dynamic setting. Note that RRT* is
considered a static motion planner (does not possess temporal
planning capabilities) while the rest are dynamic in the sense



that they can consider dynamic information in the planning
process.

# Scenario No. Dyn. Obs. Static/Dynamic Obs. Type

1 Empty 0 Static None
2 Wall 0 Static None
3 Wall2 0 Static None
4 Wall3 0 Static None
5 Dead End 0 Static None
6 Blind Corner 2 Both RHLP
7 Crosswalk 2 Both CV
8 Crosswalk2 60 Both CV
9 Crosswalk3 120 Both CV

10 Guard 1 Both RHLP
11 Corridor 1 Both CV
12 Corridor2 2 Both RHLP
13 Warehouse Empty 0 Static None
14 Warehouse1 10 Both RHLP
15 Warehouse Large 11 Both RHLP
16 Warehouse2 10 Both RHLP
17 Warehouse3 10 Both RHLP
18 Unreachable 1 Both CV
19 Survival 1 Both CV

TABLE II
SCENARIOS PART OF THE BENCHMARK.

A. Benchmark

The proposed benchmark1 includes nineteen different sce-
narios (see Tab. II) where some scenarios are static and some
are dynamic. All of the scenarios vary in size, geometrical
appearance and number of dynamic obstacles, see Fig. 5.
For dynamic obstacle movement, either a constant velocity
motion model [28] is used or a simplified version of RHLP
(using only Areduced no wait-time and no predictions). The
current position and velocity of the dynamic obstacles are
known at all times to the motion planner from the simulation.
The benchmark code is containerized utilizing Docker [30]
and the code is implemented in C++ utilizing ROS [31]. This
simplies running the benchmark on different machines de-
spite different requirements on ROS and other dependencies.
The robotic platform used in all scenarios is the DJI Matrice
1002 and it utilizes the same nonlinear modell as in [13].
The nonlinear MPC controller first developed in [32] and
later used in [13] has been employed for trajectory tracking
and remains the same in all provided motion planners. The
motion primitives are generated offline utilizing ACADO
[21]. For both RRT* and Temporal RRT*, each node in the
resulting branch is sequentially fed to the NMPC, which then
steers the system toward a hovering state at each node. In
contrast, lattice-based motion planners use motion primitives,
providing the NMPC with a complete reference trajectory
instead. For the lattice-based motion planners, the lattice
discretization is fixed at 0.5 m in all experiments. The
experiment procedure is the following:

2www.dji.com/matrice100

• For each scenario run: Select a motion planner to be
evaluated.

• The agent starts in a scenario-specific location.
• The scenario handler starts the specified scenario and

spawns in static and dynamic obstacles. The scenario
handler sends a scenario-specific navigation goal to the
motion planner.

• The motion planning algorithm starts and planning
begins towards the supplied navigation goal.

• The experiment will continue until the agent reaches the
desired navigation goal or until a hard time limit of 900
seconds is reached.

Each scenario is repeated ten times for each planner, and
the results are reported as µ±σ in each scenario. The results
discussed in Sec. V-B and V-E are aggregated over several
scenarios, where the results in V-C and V-D are not. The
aggregated results in Table III show combined mean and
standard deviation across diverse scenarios with varying size,
geometry, and dynamic obstacles. High variability causes the
standard deviation to sometimes exceed the mean. Despite
this, it can still indicate a planner’s overall performance. The
randomness in each scenario comes from non-deterministic
computations. The supplied performance measures are TCD:
Total Collision Duration [s], NOC: Number of (dynamic)
collisions, TUC: Time until (first) collision [s], PT: Planning
Time [s], PL: Path Length [m] and SR: Success Rate [%]
reached goal out of the possible navigation goals.

Fig. 5. Selected scenarios from the provided benchmark used in the static
and dynamic evaluation in Sec. V-B and V-E.

B. Static scenarios

Initial experiments were conducted in a static setting to
assess the motion planners in a non-dynamic setting. The
aggregated results can be found in Tab. III Static Environ-
ment. We selected a subset of the most challenging scenarios
for dynamic evaluation in Sec. V-E; accordingly, we evaluate
those same scenarios in static mode here (scenarios 6, 8, 9,
12, 17, 18; see Fig. 5). From Tab. III Static Environment
it can be observed that RRT* and T-RRT* suffer from
increased PT and PL, compared to the lattice-based motion
planners, while not achieving full SR. RHLP and SLP
perform similarly and in all metrics, which is expected due
to the static setting of the environment.



Motion Planner TCD NOC TUC PT PL SR

Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD

Static Environment (Scenario 6, 8, 9, 12, 17 and 18 Tab. II)
RRT* 0 ± 0 0 ± 0 inf ± 0 1.92 ± 3.98 44.4 ± 36.56 47/60
T-RRT* 0 ± 0 0 ± 0 inf ± 0 1.65 ± 3.89 45.82 ± 36.92 48/60
RHLP 0 ± 0 0 ± 0 inf ± 0 0.67 ± 1.25 29.06 ± 30.44 50/60
SLP 0 ± 0 0 ± 0 inf ± 0 0.97 ± 2.32 31.45 ± 34.03 50/60

Unreachable (Scenario 18 Tab. II)
RRT* 9.99 ± 0.04 1 ± 0 27.55 ± 0.03 10.01 ± 0.11 0 ± 0 0/10*
T-RRT* 9.99 ± 0.01 1 ± 0 27.54 ± 0.01 9.79 ± 0.10 0 ± 0 0/10*
RHLP 10 ± 0.02 1 ± 0 27.53 ± 0.01 3.02 ± 0.01 0 ± 0 0/10*
SLP 0 ± 0 0 ± 0 inf ± 0 5.77 ± 0 19.87 ± 0.93 0/10*

Survival (Scenario 19 Tab. II)
RHLP 9.49 ± 1 1 ± 0 84.47 ± 0.62 0.02 ± 0.001 67.1 ± 0.3 10/10
SLP 7.93 ± 0.30 1 ± 0 82.84 ± 0.09 0.01 ± 0.001 61.78 ± 0.4 10/10

Blind Corner (Scenario 6 Tab. II)
RRT* 1.22 ± 0.16 1 ± 0 6.02 ± 0.13 0.03 ± 0 12.73 ± 0.02 10/10
T-RRT* 1.56 ± 0.41 1.8 ± 0.4 5.99 ± 0.16 0.01 ± 0 13.73 ± 1.54 10/10
RHLP 0.98 ± 0.97 1.3 ± 0.6 11.52 ± 3.95 0.10 ± 0.11 6.50 ± 2.82 10/10
SLP 0.42 ± 0.85 0.2 ± 0.4 14.55 ± 0.17 0.001 ± 0 9.81 ± 3.44 10/10

Dynamic Environments (Scenario 6, 8, 9, 12, 17 and 18 Tab. II)
RRT* 26.14 ± 31.4 4.87 ± 4.68 20.31 ± 16.32 1.78 ± 4.04 42.15 ± 31.24 46/60
T-RRT* 75.35 ± 92.21 6.47 ± 5.47 85.36 ± 101.97 2.64 ± 3.7 48.76 ± 39.29 34/60
RHLP 4.12 ± 5.88 0.92 ± 0.95 45.49 ± 42.05 0.92 ± 1.2 31.25 ± 29.84 50/60
SLP 1.99 ± 2.68 0.27 ± 0.23 324.56 ± 446.34 1.05 ± 2.32 42.48 ± 31.9 50/60

TABLE III
MERGED BENCHMARKING RESULTS FOR DIFFERENT MOTION PLANNERS ACROSS MULTIPLE SCENARIOS. THE TABLE PRESENTS MEAN AND

STANDARD DEVIATION FOR THE PERFORMANCE METRICS DESCRIBED IN SEC. V-A. THE RESULTS ARE DISCUSSED IN SEC. (V-B)-(V-E). FOR SR IN

Unreachable (MARKED WITH *) IS IT NOT POSSIBLE TO REACH THE GOAL SINCE IT IS BLOCKED BY STATIC OBSTACLES, THUS IS 0 THE BEST POSSIBLE

RESULT. AQUIRING inf IN TUC DENOTS THAT NO COLLISIONS OCCURRED. BOLD MARKS THE BEST POSSIBLE RESULT WHEN ITS NOT A TIE.

C. Evaluation of Local planning

To examine the performance of the newly added capa-
bilities in SLP were experiments conducted that specifically
targeted these functionalities. First, the introduction of Local
planning, see Sec. IV-F, was assessed in the Unreachable
scenario (see Tab. II No. 18). In the Unreachable scenario, no
collision-free trajectory exists to the goal (Fig. 3 (2)), while
a dynamic obstacle approaches the robot’s initial position.
This intentionally benchmarks agent survival when no plan
to the destination exists. The results can be found in Tab. III
Unreachable. The baselines (RRT*, T-RRT*, RHLP) cannot
handle this scenario as they lack dynamic obstacle avoidance
without a feasible goal trajectory, causing collisions. Also no
baseline planner moves from the initial position, leading to 0
in PL. In contrast, SLP utilizes its local planning capabilities
and successfully avoids all collisions while moving as close
as possible to the goal. Here, the result in PL for SLP
is noted as the best, since we favor taking action instead
of staying idle in this scenario. Additionally, RHLP and
SLP were evaluated in the Survival scenario (See Tab. II
No. 19). In this scenario, avoiding a collision is impossible
(See Figure, 3). Both RHLP and SLP try to maximize
TUC, see Tab. III Survival. Both planners show survival and

resilience capabilities by actively avoiding collisions as long
as possible.

D. Evaluation of Emergency trajectories

Second, the introduction of emergency trajectories, see
Sec. IV-G was assessed in the Blind Corner scenario (see
Tab. II No. 6). This scenario consists of an opening in a door
where the goal state is patrolled by two dynamic obstacles
moving back and forth, see Fig. 4. This scenario is designed
so that the lattice-based motion planners should find a single
primitive that will take them to the goal (when the gap is
momentarily clear). However, following this primitive will
inevitably lead to a collision, thus the primitive execution
must be aborted in order to maintain safety constraints. The
baselines all fail as shown in Tab. III Blind Corner while
SLP outperforms them in terms of TCD and NOC.

E. Dynamic Scenarios

Finally, to thoroughly assess the planners, they have been
evaluated across multiple dynamic scenarios see Tab. III
Dynamic Scenarios. Adaptive replanning is primarily evalu-
ated in this setup. This table aggregates the mean (10 runs)
for each scenario in Fig. 5 and showcases the ”average”
performance for each motion planner in this benchmark suite.



Inspecting Tab. III it can be noticed that SLP achieves the
lowest TCD and NOC compared to the baselines while
maintaining a high TUC. This suggests that it effectively
avoids collisions overall but also tries to postpone them
until no other alternative exists, demonstrating resilience.
Naturally, this comes with a trade-off in PT and PL (compare
Static Environment) but this does not impact the overall
performance of reaching the goal, see SR.

VI. CONCLUSION

In this work we propose SLP, a safe lattice planning
framework built to allow for motion planning in dynamic
environments. We extend the work on RHLP by formaliz-
ing the Receding-Horizon Temporal planning algorithm and
extending it with edge-case functionality such as adaptive
replanning, local planning and emergency trajectories. To
validate the performance of SLP, we conduct extensive
experiments in a set of diverse dynamic scenarios where we
also compare against baselines. Our experiments show that
SLP outperforms the baselines both in terms of safety and
resilience in dynamic scenarios. In future work, we aim to
combine SLP with DAEP [29] to perform real-world safe
3D-exploration in dynamic environments.
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