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Exploration in dynamic and uncertain real-world environments is an open problem in robotics and it constitutes a foundational capability of autonomous systems operating in most of the real-
world. While 3D exploration planning has been extensively studied, the environments are assumed static or only reactive collision avoidance is carried out. We propose a novel approach to not
only avoid dynamic obstacles but also include them in the plan itself, to deliberately exploit the dynamic environment in the agent's favor. The proposed planner, Dynamic Autonomous
Exploration Planner (DAEP), extends AEP [1] to explicitly plan with respect to dynamic obstacles. Furthermore, addressing prior errors within AEP in DAEP has resulted in enhanced exploration
within static environments. To thoroughly evaluate exploration planners in dynamic settings, we propose a new enhanced benchmark suite with several dynamic environments, including large-
scale outdoor environments. DAEP outperforms state-of-the-art planners in dynamic and large-scale environments and is shown to be more effective at both exploration and collision avoidance.
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Also, historical data of dynamc obstacle
positions is utilized to prioritize certain areas
that has historically been occupied but is
currently free. This data is represented in a
Dynamic Frequency Map (DFM).
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00 || — & We evalute the proposed method in a new benchmark suite which
12000 contains 10 worlds, 6 from [2] that has been improved and 4 from us,
filled with dynamic obstacles. We show that the propsed method
outperforms state-of-the-art exploration planners in both static an
dynamic environments. DAEP is also shown to scale well to

large-scale environments, while exploring more effectively and safe.
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