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Abstract— Exploration in dynamic and uncertain real-world
environments is an open problem in robotics and it constitutes
a foundational capability of autonomous systems operating
in most of the real-world. While 3D exploration planning
has been extensively studied, the environments are assumed
static or only reactive collision avoidance is carried out. We
propose a novel approach to not only avoid dynamic obsta-
cles but also include them in the plan itself, to deliberately
exploit the dynamic environment in the agent’s favor. The
proposed planner, Dynamic Autonomous Exploration Planner
(DAEP), extends AEP to explicitly plan with respect to dynamic
obstacles. Furthermore, addressing prior errors within AEP
in DAEP has resulted in enhanced exploration within static
environments. To thoroughly evaluate exploration planners in
such settings we propose a new enhanced benchmark suite with
several dynamic environments, including large-scale outdoor
environments. DAEP outperforms state-of-the-art planners in
dynamic and large-scale environments and is shown to be more
effective at both exploration and collision avoidance.

I. INTRODUCTION

Real-world environments change over time. Be it due to
construction, renovation, refurbishment, object relocation or
deterioration. For robots to function effectively in the real-
world they must possess the ability to explore their surround-
ings to build or maintain a 3D world model. Exploration is
consequently a foundational capability as it enables the agent
to navigate an a priori unknown environment effectively
and enable the gathering of valuable information about the
environment for any number of tasks.

Deliberate exploration is an open problem in robotics. The
3D exploration planning problem is to autonomously explore
a potentially large and complex environment as quickly as
possible, such that it is covered with a sensor configura-
tion until desired coverage. The static environment case
has been well-studied for applications such as volumetric
exploration [1], surface inspection [2], object search [3],
infrastructure modeling [4], weed classification [5] and 3D
reconstruction [6] among others. However, most everyday
environments of the real-world are occupied by people, pets,
vehicles and other autonomous agents: The environments are
dynamic, not static. Existing techniques do not take into
account the presence of dynamic obstacles beyond simple
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Fig. 1: Real-world 3D environments can be non-trivial to
explore in detail due to large scales, geometrical complexity
and the presence of dynamic obstacles wandering about.

obstacle avoidance behavior [7][8]. Even though it can be
possible to force a region to be void of dynamic obstacles,
it is often inconvenient and time-consuming. For instance,
imagine trying to explore a busy city center like Times
Square in New York. The process of removing dynamic
obstacles from such a space is both laborious, costly and
would cause major annoyance. Furthermore, clearing an area
proves especially difficult if the scenario at hand is grand, as
in Fig. 1. Moreover, these environments might need repeated
exploration (changing world) which makes it even more
inconvenient to clear the area. It would be far better to be able
to effectively explore such environments in the presence of
dynamic obstacles. Not to mention if time is of the essence.

We consider the problem of autonomous 3D exploration
planning in the large-scale setting (Fig. 1) with the presence
of dynamic obstacles. Both to avoid dynamic obstacles for
safety reasons and to make the exploration more effective by
exploiting how the environment changes. The contributions
of this work are:

• An improved benchmark1 for evaluating exploration
planners in environments with dynamic obstacles. It
comprises ten maps with varying sizes and complex
geometries, reflecting challenging real-world environ-
ments. Docker [9] is used to provide high reproducibil-
ity and compatibility.

• A comprehensive evaluation of existing exploration
planners utilizing the proposed benchmark. The plan-
ners are examined in both a static and dynamic setting
to investigate their different strengths and weaknesses.

1https://github.com/LudvigWiden/daeplanner



• A proposed planner (DAEP) that demonstrates both
superior effectiveness and safety over state-of-the-art.

The paper’s organization is as follows: In II, we introduce
related research to contextualize the paper’s contribution.
The dynamic 3D exploration problem is defined in III.
The presentation of the proposed method, DAEP, is in IV.
The evaluation of this approach is detailed in V. Finally,
conclusions in VI.

II. RELATED WORK

Autonomous 3D exploration has been under active study
for over two decades [10], with frontier exploration [10]
as one of the first approaches to tackle 3D exploration. A
frontier can formally be defined as the boundary between
explored and unexplored regions of the environment. Frontier
exploration is well established [11][8] but poses challenges
as how to explore a local region effectively and how to
acquire information gain when traveling between regions.

Next, work on the next-best-view (NBV) problem [12]
from computer vision, enabled autonomous NBV exploration
planning [13] which focuses directly on the sensor coverage
problem. This made efficient local exploration with receding-
horizon NBV planning (RH-NBVP) [1] possible. It works
by combining NVB sampling with rapidly exploring random
trees (RRT) [14] which produce traversable paths between
the robot pose and candidate viewpoints. By executing only
the first edge from the RRT and repeating the expansion
process, the planner adapts to new information.

Autonomous exploration planner (AEP) [15] combines
both paradigms where RH-NBVP is used as a local explo-
ration strategy and frontier exploration for global planning.
This combination has proved successful, especially in large-
scale environments where RH-NBVP may suffer from pre-
mature termination. AEP utilizes Gaussian processes [16]
to effectively estimate the potential information gain. The
potential information gain translates to the unmapped volume
that can be collected from a pose and it is an important
principle we build upon in this work.

AEP’s selection of interesting viewpoints does not neces-
sarily consider the structure of interest when planning which
may lead to inefficient potential information gain estimation.
This is addressed by [17], which proposes a novel informed
sampling-based approach that leverages surface frontiers to
sample viewpoints only where high information gain is
expected, leading to faster exploration. This approach has
been shown to outperform AEP in realistic static exploration
scenarios. However, the code is not available and it has
consequently not been included in our evaluation.

The first limited steps towards autonomous exploration
planning for dynamic obstacles are dynamic frontiers [8]
and the dynamic exploration planner (DEP) [7]. The former
extends 2D frontier exploration with a new type of frontier
that represents one or several dynamic obstacles. These can
for example be (detected) people who stand in front of a door
opening. These dynamic frontiers will be visited later when
people hopefully have moved, unlocking new unexplored
regions.

DEP [7] instead builds a probabilistic roadmap (PRM) [18]
incrementally, which is used for reactive collision avoidance
by finding a path around dynamic obstacles when collisions
are imminent. Consequently, obstacle collisions are poten-
tially reduced, but obstacles have no other impact on the
autonomous exploration itself. DEP denotes this ability to
handle dynamic obstacles as a replanning [19] functionality.

III. PROBLEM STATEMENT

The problem to consider can be formalized as follows.
Given a 3D volume V ⊂ R3, the objective of the agent
is to explore this volume as completely as possible while
avoiding collisions with dynamic obstacles. The volume V
consists of two components, namely the free volume Vfree(t)
and the occupied volume Voccupied. Here Voccupied refers to
the static environment where dynamic obstacles have been
excluded. Note that the free volume is subject to temporal
change, meaning that at time t the volume might be occupied
by a dynamic obstacle. Initially, all poses p ∈ V ⊂ R3

are unmapped. Thus the objective is to build an internal
representation, M , that resembles Voccupied as closely as
possible by exploring the environment. Moreover, the agent
must compute feasible routes that avoid the trajectory of
the dynamic obstacles while simultaneously avoiding sub-
optimal views in the environment to minimize the exploration
time and path length. Due to the highly uncertain and
dynamic setting of the environment, this must be solved
online.

IV. PROPOSED APPROACH

We propose the Dynamic Autonomous Exploration Plan-
ner (DAEP), which builds upon AEP and introduces a crucial
correction as well as several important modifications and
improvements. See Fig. 2 for an overview of DAEP. The
coming sections highlight the most important components
of DAEP.

A. Introduction to AEP

A brief introduction will be given of AEP, to help the
reader grasp the concepts of DAEP. Initially, will the local
planner create an RRT-tree, where the static information gain
is estimated in each pose utilizing the static score function
[15]. Subsequently, the pose with the highest score will be
chosen as goal node and the agent will travel to that pose
by following the structure of the RRT-tree. If no local nodes
with sufficient information gain can be found, then the global
planner will take over. It will search for the closest frontier
which has been cached earlier in the exploration process
by expanding an RRT*-tree [20]. If no frontiers exist, then
exploration is completed, otherwise the agent will travel to
the closest frontier and continue the exploration process.

B. Predictor

To operate in a dynamic environment, a predictor compo-
nent is needed to estimate the future trajectory of dynamic
obstacles. Here, a Kalman filter [21] has been employed with
a constant velocity motion model [22]. The state vector is



Fig. 2: Schematic overview of DAEP with references to
Sec. (IV-B)-(IV-G) for functionality descriptions for each
component.

given as
(
x y vx vy

)
, where x and y are the position

of the dynamic obstacle at time point k and vx and vy
are the velocities in the x and y direction at time point k.
Measurements are supplied by the simulation environment
regarding the current state of the dynamic obstacles. The
Kalman filter provides a future distribution of the position of
the dynamic obstacle, with a mean and bounded covariance
[23][24] for each time point k. These can be utilized to
handle the uncertainty in the dynamic environment and thus
help construct collision-free paths.

C. Time-based RRTs

Including a predictor component enables the agent to
construct paths that avoid the future trajectories of the
dynamic obstacles. This is done by introducing time as a
state in the RRT-tree construction, similarly as [25]. Each
node is assigned a time of arrival, namely the time at which
the agent is estimated to reach a certain node. By comparing
the time of arrival with the future trajectory for each dynamic
obstacle it can be determined whether or not the node is
collision-free in the future. This technique is used in both
the local and global planner.

D. Dynamic Information Gain

Due to the environment being dynamic, it is no longer
guaranteed that the estimated potential information gain will
be acquired upon arrival to a certain view. This is since
dynamic obstacles may block the view upon arrival, hence
decreasing the information gain acquired. To address these
issues, a dynamic score function s(p, t) (Sec. IV-F) has
been introduced. This function utilizes dynamic information
gain d(p, t) to produce better decisions in the dynamic
environment. Inspecting Fig. 3, the dynamic information gain
is simply computed as the difference between the blue rays
and the red rays (note that the red rays start within the gray
square). This dynamic information gain can be estimated
during the construction of the RRT and hence assigned to
each node. Note that the blue rays blocked by the white
circle will be included in the available information gain upon
arrival at the origin of the blue rays.

Fig. 3: Dynamic information gain visualized with one dy-
namic obstacle. The white circle represents the current posi-
tion of the dynamic obstacle while the gray square represents
its future bounding box according to the predictor compo-
nent. Arriving at the point where the blue rays originate, the
line of sight will be obstructed, resulting in the invisibility
of the red rays as a consequence.

E. Dynamic Frequency Map

Dynamic obstacles tend to not navigate uniformly. Usually
they follow designated paths or roads. This can be leveraged
to enhance decision-making in a dynamic environment. By
constructing a heat map of the environment and updating
it with position information of dynamic obstacles from
the simulation environment, a distribution of the historical
position of dynamic obstacles can be obtained. Since they
follow designated paths, regions will be formed in the heat
map. This Dynamic Frequency Map, DFM(p), can then be
utilized to increase the priority for areas that have previously
shown significant occupancy but are presently unoccupied
according to the most recent prediction.

F. Dynamic Score Function

To aid the agent in the decision-making process, a new
dynamic score function has been implemented that extends
the score function of AEP (Sec. IV-A) with a temporal (Sec.
IV-D) and a statistical (Sec. IV-E) component. The dynamic
score in pose p is

s(p, t) = d(p, t) · e−λ·c(p)︸ ︷︷ ︸
(0,1]

·(1 + (ζ ·DFM(p)︸ ︷︷ ︸
[0,1]

) (1)

where the dynamic score s(p, t) for a specific pose p at
time t is determined by the dynamic information gain d(p, t)
scaled by the cost c(p) associated with traveling to that
pose. Also, the dynamic scores receive a potential boost
(1+(ζ ·DFM(p)). Here, λ and ζ are tuning parameters. The
dynamic score consists of scaling the dynamic information
gain by distance, prioritizing closer poses with higher scores.
If a pose is currently unoccupied but has been historically
occupied, it will receive a boost in score which will re-direct
the agent to explore this new priority region.

G. Yaw Angle Booster

Initial experiments revealed that AEP occasionally omits
certain areas near the map boundary, resulting in significant



TABLE I: Experimental Parameters

Parameter Value Parameter Value
Linear Velocity 0.5 [m/s] Collision Box [m3] [0.4, 0.4, 0.1]
Angular Velocity 1 [rad/s] Horizontal FoV 103.2 [deg]
Map Resolution 0.2 [m] Vertical FoV 77.4 [deg]
RRT Ext. range 1 [m] Camera Range 5 [m]
Dyn. Obs. Lin. Vel. 0.35 [m/s] Dyn. Obs. Ang. Vel. 1 [rad/s]
λ 0.75 ζ 0.5
α 6

gaps in the environment representation, also reported by [17].
It was found that AEP only accounts for volume inside the
pre-defined bounding box, leading to negligent exploration
near the borders. DAEP addresses this by artificially boosting
information gain near borders using a constant multiplier α.
This enhancement has improved the exploration greatly close
to the borders over AEP.

V. EXPERIMENTAL EVALUATION

To evaluate the performance of DAEP compared to other
planners, especially for realistic scenarios with dynamic
obstacles, a benchmark has been developed (V-A). DAEP and
three competing planners (RH-NBVP [1], AEP [15], DEP
[7]) are evaluated on the benchmark. The planners undergo
initial evaluation in several static environments to assess
in the classic sense, followed by assessment in dynamic
environments. Finally, DEP and DAEP are evaluated on
large-scale dynamic environments to see how they scale.

A. Benchmark

The benchmark1 include ten dynamic scenarios (Tab. II)
which can also be run with no dynamic obstacles. Six of the
worlds are from [7] where we have added difficult dynamic
obstacles (people walking) to the previous static worlds Cafe,
Maze and Apartment, made them more difficult in Field, and
kept them as-is in Auditorium and Tunnel. In the new scenar-
ios Crosswalks has 4 people crossing back-and-forth, Patrol
has eight people moving on patrol paths and Exhibition has
people moving along the walls at a close poster-viewing
distance. The large-scale scenario Village (Fig. 4) is a high-
res scan of a cotton village with surrounding greenery, with
people walking around. The benchmark code itself consists
of a Docker solution which simplifies getting started and
extending the benchmark in the future. It simplifies running
all planners on a single machine, despite requirements on
different versions of ROS [26] and other conflicting depen-
dencies. Integration of the four planners RH-NBVP, AEP,
DEP, and DAEP is provided. The scenarios are simulated
with Gazebo 9 [27], using the same simulated quadcopter
and Realsense D435 depth camera as in [7] with the camera
parameters from Tab. I. The controller supplied by [7] has
been employed in all planners, to avoid alterations of the
motion planning. OctoMap [28] is used as a representation
of the internal map. The following experiment procedure has
been followed:

• For each experiment run: A planner, world and mode
(with or without dynamic obstacles) is chosen.

TABLE II: Worlds part of the benchmark.

World Origin Volume [m³] No. Dyn. Obs.
Cafe [7] 510 2
Maze [7] 865 5
Apartment [7] 1627 12
Tunnel [7] 1100 2
Field [7] 1440 8
Auditorium [7] 798 3
Exhibition NEW 450 22
Crosswalks NEW 450 4
Patrol NEW 800 8
Village NEW 40057 15

Fig. 4: Top-down view of the Village area. The red bounding
box illustrates the volume to be explored. The area is roughly
1 hectare and populated with multiple dynamic obstacles.
The paths of the dynamic obstacles are highlighted in green
where the lines indicate that the dynamic obstacle moves
back and forth while a loop indicates that the dynamic
obstacles circulate.

• The agent starts in one of five different start locations
in the specified world with zero yaw.

• The agent travels 1 meter vertically up in the air. A 360-
degree rotation is performed to gain initial information
about the environment and to ensure free space in the
representation to start exploring from.

• The exploration algorithm starts and exploration begins.
• The exploration continues until the planner signals be-

ing finished, or the hard time limit (20 min) is reached.
During experiments the default parameters for each plan-

ner1 have been used. The experiment parameters in Tab. I
have been supplied by [7] except for λ, ζ and α which were
manually tuned until sufficient behavior. The same param-
eters have been used in all experiments. Each experiment
is repeated five times (i.e. five runs) and the results are
reported as µ±σ over all specified scenarios’ mean run. The
different performance measures used are C: Coverage [%],
T: Exploration Time [s], PL: Path Length [m], PT: Planning
Time [s] and NOC: Number Of Collisions. Planning Time
denotes the accumulated time it takes for the system to
construct a new path. While planning, the agent is stationary.
Exploration Time denotes the total time it takes for the agent
to complete the exploration. Note that the abbreviation DEP
refers to DEP with its re-plan functionality enabled while
DEP-S denotes that it is disabled.



(a) Static world with static planners. (b) Dynamic world with static planners. (c) Dynamic world with dynamic planners
(AEP as reference).

(d) Exploration in the Village environment
with dynamic obstacles. AEP as reference.

(e) Collisions for static planners. (f) Collisions for dynamic planners.

Fig. 5: Upper row: Exploration progress in Maze. The maximum volume is 865 m3. Here (D)AEP halts the exploration
where the envelope stops. Lower row: Exploration progress in the Village environment to the left and collision graphs in the
middle and to the right for Maze. The collision graphs present the run that accumulated the most coverage. Orange segments
indicate collisions and their duration.

B. Static Planners in a Static Environment
The planners are evaluated on static versions of the first

six worlds (same as [7]) to compare their performance in the
classical sense. The aggregated results are shown in Tab. IIIa
and coverage over time is shown for Maze in Fig. 5a. DAEP
is employed in this experiment to evaluate its performance
after the correction from Sec. IV-G, even though it contains
some overhead to handle the dynamic environment. Including
it will hopefully show the impact of this fix in the static
setting compared to AEP. DEP is also employed without
its re-planning ability, thus it lacks any overhead. From
Fig. 5a it can be observed that among the static planners,
AEP manages to explore the environment quicker than both
DEP-S and RH-NBVP while acquiring a similar amount
of final volume. However, DAEP outperforms all planners
in this scenario in terms of coverage. The observations
regarding the static planners are reflected in Tab. IIIa, where
AEP dominates in terms of exploration time, while DEP-S
accumulates the largest volume on average. However, DAEP
proves to find more coverage than its static competitors
despite its overhead. It produces similar results in terms of
path length compared to AEP while doubling the planning
time due to the overhead. All planners face challenges
achieving 100% coverage due to drone size restrictions and
difficulties adjusting a bounding box to a world.

C. Static Planners in a Dynamic Environment

Next, we investigate how AEP, DEP-S, and RH-NBVP
are impacted by the presence of dynamic obstacles. The
first six worlds are now filled with dynamic obstacles. The
aggregated results can be found in Tab. IIIb. Coverage over
time is shown for Maze (Fig. 5b) as a representative example.
Coverage variance increased for all planners (Tab. IIIb),
possibly due to dynamic obstacles limiting sight and access
to certain areas. Collisions increased (Fig. 5e), which would
be disastrous in real-world scenarios. The findings in Fig. 5e
are reinforced by Tab. IIIb to occur in general. All planners
find less coverage compared to Tab. IIIa. Similarly for explo-
ration time and planning time, except for the exploration and
planning time of RH-NBVP. Finally, each planner collides
at least four times on average for each run.

D. Dynamic Planners in a Dynamic Environment

Introducing the dynamic planners in the dynamic envi-
ronment should address the issues presented in Sec. V-C.
Here, DEP and DAEP are employed in the dynamic environ-
ment, with AEP as a reference. The experiments have been
conducted in the first six worlds, as well as in Exhibition,
Crosswalks and Patrol. The aggregated results can be found
in Tab. IIIc. A representative example is shown in Fig. 5c
with associated collision rate (Fig. 5f) for Maze. From Fig.



TABLE III: Results from Different Scenarios and Planners

AEP (DAEP) DEP-S RH-NBVP
C 84.05 ± 9.53

(86.37 ± 10.6)
85.84 ± 11.28 80.55 ± 12.92

T 541.14 ± 401.68
(655.13 ± 349.25)

1017.35± 248.02 1128.76± 168.18

PL 143.76 ± 110.25
(143.59 ± 73.33)

254.81 ± 70.53 211.25 ± 37.6

PT 55.64 ± 51.02
(119.2 ± 57.94)

28.33 ± 18.39 1.83 ± 0.33

(a) Results from static environments. Results from DAEP is in
parentheses.

AEP DEP-S RH-NBVP
C 80.29 ± 15.43 84.63 ± 13 77.79 ± 13.25
T 460.68± 373.53 953.91± 253.45 1158.47± 99.91
PL 111.9 ± 77.05 223.25± 52.8 204.82 ± 30.34
PT 29.95 ± 24.21 25.8 ± 15.14 2.04 ± 1.02
NOC 4.07 ± 3.83 6.47 ± 5.36 6.63 ± 4.59

(b) Results from dynamic environments with static planners.

AEP (Reference) DEP DAEP
C 83.56 ± 13.58 81.85 ± 18.37 91.25 ± 6.25
T 368.78± 335.05 775.03± 301.81 589.59 ± 346.44
PL 91.7 ± 70.39 170.96± 65.15 136.43 ± 66.37
PT 26.11 ± 21.33 53.7 ± 39.56 79.79 ± 40.29
NOC 3.36 ± 3.41 6.38 ± 4.38 0.31 ± 0.63
(c) Results from dynamic environments with dynamic planners.

AEP (Reference) DEP DAEP
C 8.56 ± 4.49 24.22 ± 1.66 32.96 ± 4.98
T 1094.61± 531.83 7175.78± 17.73 7201.08± 2.27
PL 213.03± 104.36 893.66 ± 27.65 1280.65± 22.49
PT 57.08 ± 30.26 2053.47± 163.9 930.01 ± 155.52
NOC 0 ± 0 1.4 ± 1.0198 0 ± 0

(d) Results from large-scale dynamic environment Village.

- DEP DAEP
C - 60.93 68.05
T - 35880.8 31241.5
PL - 2978.4 5132.73
PT - 20068.1 5763.29
NOC - 25 0

(e) Village over 10 hours in a dynamic setting with DAEP and DEP.

5c it is prominent that DAEP explores the environment faster
and considerably more meticulously than DEP. Noticeably, it
also explores for a longer period than AEP and thus, manages
to gather more volume. Furthermore, AEP and DEP continue
to collide frequently, while DAEP collides rarely (e.g. only
once in Fig 5f). The results provided in Tab. IIIc demonstrate
that DAEP manages to accumulate more coverage than DEP
and AEP on average. Additionally, it does so with a reduced
average exploration time and path length compared to DEP.
Finally, the number of collisions has decreased significantly
for DAEP, compared to DEP and AEP.

E. Large-Scale Environments

Finally, we investigate how the planners scale to realistic
large-scale outdoor scenarios. Here, we use Village, see
Fig. 4. The collected findings for the 2-hour experiment
are shown in Tab. IIId and the exploration progress is
depicted in Fig. 5d. Interestingly, it can be observed, from
Fig. 5d, that AEP halts the exploration after only 2000

seconds. Correspondingly, this can be noticed in Tab. IIId
where AEP collects significantly less coverage. It was found
that AEP was restricted in the sampling process of new
coordinates, where coordinates in a certain interval could
never be sampled, thus leading to absent exploration. DAEP
resolves this by making the interval dynamic so it adapts
to the size of the current world. Moreover, DAEP manages
to find a larger amount of volume on average compared to
DEP, while completely avoiding collisions. After the 2-hour
experiment only about 32% of the Village environment was
mapped by DAEP. Hence, DAEP and DEP were allowed
to continue to explore for a total of 10 hours to push
their limits (this experiment was only conducted once). The
results can be found in Tab. IIIe and the corresponding
representation of the world is depicted in Fig. 6. Comparing
the real world in Fig. 4 with the representation in Fig. 6,
DAEP is observed to have managed to capture the essential
structures and details of the environment. Examining Tab.
IIIe, it shows that roughly 68% of the environment has been
mapped after 10 hours while avoiding collisions completely.
DAEP outperforms DEP both in terms of coverage but also
in number of collisions. Also, observe here that DAEP only
plans roughly 18% of the total exploration time while DEP
plans 56% of the total exploration time.

Fig. 6: Constructed representation of the Village environment
from DAEP.

VI. SUMMARY & CONCLUSION

We propose DAEP, a novel approach for autonomous 3D
exploration with dynamic obstacles. DAEP is an extension
of AEP with several improvements to handle the presence of
dynamic obstacles. A predictor component has been added to
facilitate the construction of time-based RRTs, used for safe
and collision-free path planning. Furthermore, a novel dy-
namic score function has been proposed to facilitate efficient
navigation in a dynamic environment. Here, the dynamic
information gain has been used to predict the potential infor-
mation gain upon arrival to a new view, while the DFM score
has been used to increase priority to areas that are frequently
populated by obstacles. DAEP outperform both static and
dynamic competitors in the experiments. It demonstrates the
ability to explore large-scale environments effectively and
safely compared to previous dynamic planners. In future
work, we propose to combine the exploration planner with a
safe motion planner [29][30] for real-world testing in Village.
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[5] M. Popović, G. Hitz, J. Nieto, I. Sa, R. Siegwart, and E. Galceran,
“Online informative path planning for active classification using uavs,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA), 2017, pp. 5753–5758.

[6] S. Song and S. Jo, “Surface-based exploration for autonomous 3d
modeling,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), 2018, pp. 4319–4326.

[7] Z. Xu, D. Deng, and K. Shimada, “Autonomous uav exploration
of dynamic environments via incremental sampling and probabilistic
roadmap,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
2729–2736, 2021.

[8] V. Cavinato, T. Eppenberger, D. Youakim, R. Siegwart, and R. Dubé,
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